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LETTER TO THE EDITOR 

Spin reorientation in hexagonal antiferromagnets 

S I Abarzhi and A V Chubukov 
Institute for Physical Problems, USSR Academy of Sciences, 117334 ul. Kosygina 2, 
Moscow, USSR 

Received 20 August 1990 

Abstract. A reorientation process in quasi-one-dimensional weakly anisotropic easy-plane 
antiferromagnets on a stacked triangular lattice is shown to occur via two intermediate 
phases. The first is of spin-flop character, while the second, with two pairs of flipped 
sublattices, normally exists only in a narrow interval near a saturation field. 

An attempt to find an experimental verification of the Haldane conjecture for ID 
antiferromagnets [ l ]  renewed interest in the investigation, both experimental and theor- 
etical, of quasi-one-dimensional antiferromagnets on a stacked triangular lattice [2-lo]. 

In a previous letter [ll] (hereafter referred to as I) one of us reported on the results 
of quasiclassical calculations for reorientation processes in XY-like antiferromagnets 
with an external field applied in the basal plane. This case proved to be rather interesting 
since the anisotropy and the exchange in the basal plane, of the same order of magnitude 
due to quasi-one-dimensionality, compete with each other: the anisotropy, D ,  tends to 
confine the spins to the basal plane while the exchange interaction, J ’ ,  tends to align 
them perpendicularly to the field. 

As was shown in I, for D > 3J‘ (this is believed to be the case for CsMnBr3 [3 ,4]  and 
KNiC13 [ 6 ] )  the planar arrangement survives the application of the field completely. The 
reorientation was proved to be accompanied by a second-order transition when two 
pairs of sublattices flip. AFMR experiments [5,8] confirm this scenario. 

In the present letter we report on calculations for the reorientation process in the 
opposite case of relatively small anisotropy, when q = D/3J‘ < 1. 

We start with two points already mentioned in I :  

(i) For q < 1 the planar arrangement becomes unstable prior to the flip, at 

(ii) A saturation field Hi’) = 8JS  + 18J’S does not depend on D ,  so immediately 
H = Hi1) = 4 S m ,  which is a typical field for a spin-flop transition. 

after a ferromagnetic instability the spins are confined to the basal plane. 

It is thus natural to propose that the reorientation process for q < 1 involves an 
additional intermediate phase with a non-planar spin arrangement. The width of this 
phase tends to zero when q - 1. 
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Figure 1. Successive spin configurations: (a)  Planar phase, H < ffc'); a broken line denotes 
( p  + ~)/2;(b)spin-flopphase, H(') < H < H',*);(c)afteraspinBopoftwopairsofsublattices. 
The numbers denote sublattice spins in a given plane. An arrangement in the subsequent 
plane differs as follows: a+ - a, q -+ - q ,  p --j - y ,  y+ - p .  

We start with the microscopical spin Hamiltonian of an easy-plane antiferromagnet 
on a stacked triangular lattice: 

The quasi-one-dimensionality implies J S J ' ,  D ,  while q = D/3J' (or, to be more 
exact, D/31' where d and 1' differ from D and J' due to a short-range quantum 
renormalization; see I) is presumed to be less than unity. 

A classical equilibrium spin configuration results from a minimization of (1) with 
sublattice spins substituted for by classical vectors. We have found three different 
successive phases (see figure 1). Independently of q ,  the reorientation always starts from 
the planar arrangement. In the leading order in D/J and J'/J the angles in figure l(a) 
are given by 

( 2 )  
1 

cos - -- 
( " 5 ' j - 2 - z  

P cos - = - r:? 2 - 2  cos a = p 

wherep = H / 8 J S ,  z = H2/48JJ'S2. 
At low fields, a and (/3 + y ) / 2  are close to n / 2  while p - y undergoes a rapid change 

and, in the absence of reliminary instabilities, two pairs of sublattices flip at z = 1, i.e. 

anisotropy, when q < 1, the planar arrangement becomes unstable with respect to small 
deviations along the 2 axis at lower fields, when H approaches Hi')  = 4 S m .  In the 
classical approach this instability results in a hysteresis-free first-order transition to the 
configuration shown in figure l ( b )  with 

at H = H ,  = + 48JJ'S2. This is exactly the situation for q > 1. However, for small 

c o s p = p  1-8- + y c o s  q 
i 2  i a  a +  l) c o s a = p  1 - 6 -  

where a = 2 - q ,  6 = 3J'/2J.  
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Figure 2. A displacement of the sublattice spins 
producing an instability at H = For the sub- 
sequent plane q ,  + - q2, qz+ - q ] ,  and the 
intermediate configurations thus have non-zero 
net Z-magnetization. 

Note that although the final result of the transition can be represented as a rotation 
by n/2 about the broken axis in figure l ( a ) ,  the instability itself is induced by the 
displacements shown in figure 2, with 

c p 2 / q 1  = ( 1  + f > / ( l  - f )  wheref=  ( H W J S )  [(3 - 4 x 1  - 4>1”*/(2 - 4 ) .  (4) 

Hence, the first-order transition involves a set of intermediate states with non-zero Z -  
magnetization. Since in any real situation a transition always has some finite width, this 
result can be verified experimentally. 

The intermediate phase for H > Hi1) is a typical spin-flop phase with non-zero Z -  
projections for two pairs of sublattice spins (figure l ( b ) ) .  When the field increases, cp 
diminishes and goes to zero at H = HLz), where 

Hiz)  = 8JSp, 

cos a = p [ 1  - s(t + l ) / t ]  

p ,  = [ 1 +  ( 6 / ~ ) ( 2  - a3) / (a  - 1)]-”2. ( 5 )  

The subsequent reorientation occurs in exactly the same way as in I (figure l(c)) with 

cos p = p [ 1  - 6(t + 1)/2] (6) 

where t = sin a/sin p is a real root of the equation 

t( t  - 1) / (2  - t3) = 6p2/(1 - p2) .  (6’) 

At H = H:2)7 t = a ,  as follows from (6’)7 ensuring the coincidence between (3) with 
cp = 0 and (6), while for a, p-. 0 one has t = 2 and, hence, H = Hi3) = 8JS + 18J’S 
coinciding with the saturation field, as expected. 

Note that for D not very close to 3 J ’ ,  Hi2) = 8JS and differs from Hg3) only in J’- 
corrections. The second intermediate phase thus normally exists only in a narrow region 
close to the saturation field. When D increases, the width of the non-planar phase 
diminishes slightly, but the essential drop in Hi2) occurs only in a very narrow region of 
D close to the critical value, D,, when the non-planar phase disappears. Up to the second 
order in 6, 

D ,  = 3J’(1 - S2/2). (7) 

When (1 - D/Dc)  = 6, it follows from ( 5 )  that HL2) = Hi’). 
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The longitudinal magnetization is mainly sensitive to the first-order transition, where 
it undergoes a finite jump. The exact classical expression at relatively low fields H e JS 
is 

H [1 + 2/(2 - ~ ) ~ ] / 3  H < Hi1) 

8JS 1 H > Hi2) ,  
M ( H )  = -{ 

The peculiarities of the reorientation process also affect the AFMR frequencies. In 
particular, one can evidently expect softening at Hi2) and Hi3) as well as at the hysteresis- 
free first-order transition point, Hi ' ) .  The calculations were performed in the same 
manner as in I ,  in the framework of a six-sublattice model. In the interests of brevity, 
we will simply give the results. 

For H < H;') the configuration is the same as in I, so six AFMR frequencies are in 
essence the solutions of (9)-(10) in I. For q 1 the 'relativistic' (i.e. going to zero for 
H = D = 0 )  branches are disposed significantly below the exchange ones. In this limit 
one can simplify the equations for the low-energy modes and obtain w 3  -- 4 S m ,  and 
w 1  and w 2  as the solutions of 

where &): = 3H6/4H: and 13; = 16JDS2 - H 2 .  
For H = H i ' ) ,  w1 = 0 while w;  = 16JDS2(2 + $q2). 
As usual, the first-order transition is accompanied by a discontinuity in the spectrum. 

For H 5 H:') the equations resemble those for H < Hi1) (equation (9) in I), but without 
the right-hand side. The result is 

0.12 = ( H 2  - 16JDS2)'I2 

For low enough D ,  in passing through Hi') w1 and w 2  jump to A w l  = (12JDS2q2)lI2 
and Am2 -- - (32JDS2)1/2,  while w 3  remains practically unchanged. 

The low-Hfield dispersion of AFMR frequencies for q = 0.5 and H ,  = 64 kOe is shown 
in figure 3. 

The case of high fields is rather methodological since we cannot really hope for 
experimental verification. However, for the sake of completeness we report the results 
for the AFMR modes in this region. Three of them-the continuations of two relativistic, 
(w2 and w3)  and one exchange (U)& mode grow linearly with the field, while the others 
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Figure 3. Field dispersion of AFMR frequencies for 
9 = 0.5 and H, = 64 kOe. 

Figure 4. Field dispersion of the low-energy AFMR 

1% ~ 

HlZl H‘31 
c L H modes near saturation. 

diminish in comparison with their values at H = Hi1) and prove to be of the order of J ’ S  
for H = 81s. The instability of the non-planar phase for H = H;’) is governed by w 5 :  

w: = 4S2{[R + 3J’(a - 2 )  cos2~](3J’a  sin’ Q, + Q) - QR} (10) 

R = 4J{1-p2[1-6(l+a)]}/cos2~ Q = 4Jp2[1 -6 (1+a) ] s in2~ .  (10‘) 

where Q, is given by ( 3 ) ,  while 

For H e JS  we return to ( 9 ) ,  while for H % Hi*) it follows from (10,lO’) that w 5  + 0. 
Calculations were also made for the other two low-energy modes, w1 and w4, but the 
expressions are too cumbersome to be presented here. 

At least for HS2) < H < Hi3) we again deal with the planar configuration. In this 
phase 

W :  = 4S2[R + 3J’(t - 2)][3J’(t - U ) ]  (11) 
where t was introduced in (6’ )  and R is the same as in (10’) with Q, = 0 and t substituted 
for a. Evidently, w 5  softens on both phase boundaries, at Hi’) as well as at Hi3) .  At the 
saturation field one also has 

0 1  = 0  w 4  = 2S[9J’(D + 9J’)]’/* (12) 
in agreement with the calculations within the one-sublattice model in a paramagnetic 
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phase. The field dispersions of the low-energy AFMR frequencies near the saturation are 
shown in figure 4. 

In conclusion, we have investigated the spin reorientation in weakly anisotropic 
quasi-one-dimensional antiferromagnets. The process was shown to be accompanied by 
two phase transitions of first and second order with a non-planar spin arrangement in 
the intermediate fields. 

The condition D < 3J' is apparently fulfilled in the vanadium compounds CsVX3 
(X = C1, Br, I) [12]. Although Hgl) is expected to be rather high (Hi ' )  = 165 kOe for 
CsVBr, and 180 kOe for CsVCl,), we still believe it to be possible to verify the scenario 
proposed by the investigation of the low-H dispersions of the AFMR frequencies. 

It is a pleasure for the authors to thank Professor L A Prozorova, Professor B Y 
Kotuzhansky, Dr L E Svistov and Dr I A Zaliznyak for useful conversations. 
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